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LElTER TO THE EDITOR 

Dynamic versus kinematic symmetry breaking in a 
two-dimensional model of collective motion 

J Cseh 
Institute of Nuclear Research, Hungarian Academy of Sciences, PO Box 51, Debreen, 
Hungary Wit, and Institut W r  Theordische Physik, Justus-Liebig-Univenitat, Giessen, 
Federal Republic of Germany. 

Received 3 August 1992 

AbsImcL We investigate the question of whether or not the vibrational SpeClNm of a 
ova-dimensional interacting boson model can be transfamed into the mlalional one via 
quantum deformation of the p u p  slructure. I t  tums out that although the spectlum of 
lhe gdefarmed model shows one or another of the mlational-like features at different 
values of the deformation parameter, nevertheless, all the requirements ot the mtational 
behaviour cannot be obtained simulaneously. l h i s  m u l l  indicates that Ule quantum 
algebraic treatment cannot give an analyticai solution IO lhe eigenvaiue probiem of the 
interacting boson models of nuclear and molecular physics in the whole range of the 
physically relevant breaking of dynamical symmetries. 

In addition to the Lie algebraic description of the collective motion of many-body 
systems 11-41, more recently another type of algebraic approach has been proposed 
based on quantum groups [5].  From the mathematical point of view the qdeformed 
groups are Hopf algebras [6] ,  containing the classical Lie algebras as limiting cases. 
One of the consequences of the more general algebraic structure of these models is 
that a description in terms of dynamical symmetry is applicable to a larger territory 
than a similar description of the Lie algebraic models. The concept of the dynamical 
symmetry, as discussed in more detail below, plays a crucial role in the algebraic 
approach, e.g. it provides us with an analytical-solution of the eigenvalue problem. 
At present, however, it B not clear, how far this concept can be extended by making 
use of quantum groups. Whether or not the whole range of the physically relevant 
breaking of the dynamical symmetry in the classical Lie algebraic models can be 
covered by the analytical solutions of the quantum algebraic treatment. For example, 
can a vibrational spectrum of the Lie algebraic model he transformed into a rotational 
one via qdeformation oi the aigebraic structure? The present ietter addresses 
this question in the framework of a two-dimensional interacting boson model of 
collective motion [7] and its quantum extension [SI. In [9] a similar problem has 
been investigated in a simpler form. There the energy spectra of the one-dimensional 
SU(2) and SU,(2) models were considered. Via the q-deformation of the vibrational 
limit some rotational-like features, e.g. degeneracies of the one-dimensional spectrum 
have been found; howcver, the exact rotational spectrum was not obtained. Here we 
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consider both the energy spectra and the electric transitions of the SU(3) and SU,(3) 
models. Such an investigation can give a hint of the possible range of applicability 
of the analytically solvable qdeformed algebraic models of problems with higher 
dimensions, namely about the proposed [5,8] quantum algebraic extensions of the 
SU(4) vibron model and SU(6) quadrupole interacting boson model. 

In the Lie algebraic description of the quadrupole motion of atomic nuclei [l], 
vibrational-rotational motion of molecules [2], clusterization of nuclei [3], or structure 
of hadrons [4], the spectrum of the system is generated by a dynamical algebra, which 
usually has more than one subalgebra. The physically relevant subalgebras contain the 
algebra of angular momentum, therefore one obtains chains of nested subalgebras: 

Each of them provides us with a complete set of basis states carrying the 
representation labels of the algebras as quantum numbers. Furthermore, when the 
Hamiltonian of the system can be expressed as the function of the Casimir operators 
of a single chain of algebras the eigenvalue problem has an analytical solution. In such 
a case the system is said to have a dynamical symmetry. These dynamical symmetries 
correspond to simple geometrical and dynamical features of the system, e.g. rotation 
of a rigid rotor with permanent deformation, or soft vibration around a spherical 
equilibrium shape, etc. Fw some systems the description based on the dynamical 
symmetry proved to be a good approximation. In most of the cases, however, the 
real physical system corresponds to a situation in between these limiting cases. Then 
the matrix elements of the generators of more than one algebra chain have to be 
calculated, and the eigenvalue problem is solved by a numerical diagonalization. With 
this procedure, which we call dynamic breaking of the symmetry, one can go smoothly 
from one limiting case of the model to the other. 

As for the applications of quantum algebraic models to nuclear and molecular 
physics, they have been concentrated so far on the SUq(2) group, and its boson 
realisation in terms of oscillator quanta [5,6].  This model IS a qdeformed version of 
the interacting boson model with the dynamical algebra of the SU(2) group, which 
describes one-dimensional motions. When the deformation parameter is equal to 
zero, the Hopf algebraic description goes back to the classical Lie algebraic model. 
For non-zero values the symmetry is broken kinematically, i.e. via the deformation 
of the commutation relations of the operators. (This kind of kinematically broken 
Lie algebraic dynamical symmetry can be considered as a more general quantum 
algebraic dynamical symmetry.) It is important from the present point of view, that 
in applications to nuclear and molecular spectra the deformation parameter has values 
close to zero [5]. 

Here we are interested in the essential breaking of the symmetries of the Lie 
algebraic models. In particular, we would like to h o w  whether the kinematic 
breaking of symmetry can take us from one limit of the model (e.g. vibrational) 
to the other (rotational) and similarly with dynamic symmetry breaking of the Lie 
algebraic description. 

In the two-dimensional interacting boson model the building blocks are bosons 
with angular momentum m = O i  2. Their creation (ai, U:, U!) and annihilation 
operators (au, a+, U-) satisfy the usual boson commutation relations: 
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and the physical operators are obtained in terms of their particle number conserving 
bilinear products 

A . .  = a . a .  t 
I J  t I 

which satisfy the 

(3) 

commutation relations, and generate the U(3) group. (Here we follow the notations 
of most of the papers related to the interacting boson model, and refer to the groups 
rather than to their algebras.) The 

N = 

particle number operator is kept constant, therefore the number of independent 
operators is eight, and the underlying group structure of the model is SU(3). There 
are two group chains containing the angular momentum group SO(2). The first one 
describes the vibrational motion 

SU(3) 3 SU(2) 3 SO(2) 
I N ,  nd  > M )  (6) 

n d = N ,  N - 1 ,  ..., 1, 0 M / 2 = n ,  n d - 2  , ._ . ,  l o r 0  

ana the second one 

SU(3j 3 SO(3) 3 SO(2) 
I N ?  1 ,  M )  (7) 

1 = N, N - 2  ,..., 1, o r 0  M/2 = 1 ,  1 - 1  ,..., 1 , 0  

ciiaracierizes the rotaiionai iimii. ‘$%en the dynamicai symmetry (6j hoids, the energy 
eigenvalue is given by 

E, = A + hd + cn: + D M ~  

while the allowed E2 transitions are 
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Figure 1. Vibrational (SU(2)) and rotational ( S O ( 3 ) )  spectra at the lwodimensional 
interacting boson model with N = 6 total number of bosons. Ihe angular momentum 
values ( M )  are given above the states, and the bands are characterized hy the quantum 
numbers shown at the bottom of the figure. The arrow indicate electric transitions, and 
their relative strenghts are given by the numbers under lhe quare mots. 

is the two-dimensional quadrupole transition operator. For the rotational limit of (7) 
the corresponding analytical formulae are 

E, = a + 6 l ( l  + 1) + d M Z  (10) 

( N , 1 , M f 2 1 Q + I N , l , M )  = - d ( l ~ M / 2 ) ( l f M / 2 + 1 )  . (11) 

Spica1 vibrational and rotational spectra are shown in the left- and right- 
hand sides of figure 1, respectively. The parameters of the energy formulae are 
A = 0.0, B = 1.0, C = 0.1, D = 0.05, and a = 9.6, 6 = -0.2286, d = 0.1167. 
The strengths of the reduced electric transitions are also shown in arbitrary units. 
The interband transitions disappear in the rotational limit. 

In the quantum-deformed algebraic description the 

1 
JZ 

(12) A . .  = a i a j  t 
'1  

operators close under the q-commutation relations [SI, defined as: 

[ A ,  B], = A B  - q B A  . (13) 

The group chain corresponding to the vibrational limit of (6) also exists in the Q- 
algebraic model: 

SU,(3) 3 SU,(2) 3 S0,(2) (14) 
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while the analogue of (7) does not. The matrix elemens giving the energy eigenvalues 
and the transitions for the group chain (13) can also be obtained analytically [6,8]: 

= A + B[ndl  + c[ndl[ndl t (15) 

and 

(N,nd+1,Mf21Q*IN,"d,M)g = J[N-nd][nd/2fM/4+1] (1Q) 

where 

For the q-boson realisations of SU,(3) used in [8], two distinct cases of the 
qdefonnation are important for physical applications: 
(i) When q is real (q  = er,  with r real) the q-numbers can be written as 

sinhrx 
SlnhT [XI = - 

(ii) When q is a phase ( q  = eir ,  with r real) the q-numbers have the form 

sin T X  
sin T 

[XI = T. 

T" ,:"I.* ..* .L^ -̂ -..--.."e:,."" .L^ -":-,.A :.. .La :.....nA..,..:̂ " .La 
111 llgrrr U' LllGJC G*p,.aJL"r,a L U G  y"G3LL"" I'UaGU 111 L l l G  " , L I U U " C L I U I I ,  W,,CL,I*L Lll* 

kinematic breaking of the vibrational symmetry can result in a rotational spectrum, 
requires calculations of energies and electric transitions in terms of equations (15) 
and (16). It turns out that the pure imaginary deformation parameter of equation 
(19) does not take us towards the rotational limit. For example the ratio of the 
energies of the 4+ and 2+ states in the ground-state hand is 246 for the T = 0 
vibrational limit, with the parameters of figure 1, and it is 4 for the rotational case 
(this latter value is independent of the parameters of equation (lo), if the ground 
state is at zero energy, as in figure 1). When q is a phase, this ratio decreases with 
increasing T values, contrary to the requirement of the rotational features. 

For real values of q the deformation of the spectrum takes place in the right 
direction. The above-mentioned energy ratio increases with increasing T, the ratio of 
the interband and intraband transitions decreases, etc. However, the real rotational 
spectrum could not be obtained with this kind of deformation either, because the 
different characteristics of the rotational behaviour do not show up at the same value 
of the deformation parameter. Figure 2 illustrates the situation. For the T value. 
which gives the correct energy ratio of the lowest-lying 4+ and 2+ StdtCS, the other 
members of the band, e.g. the 12+ state, appear at a far too high energy, and the 
ratio of the  B(E2) values for the interband and intraband transitions among the 
lowest-lying states 

B(E2,O: - 2:) 
B(E2,2? i 0:) 
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Figure 2 (Lharaneristic ratios of energies and electric Vansitions of the two-dimensional 
algebraic mllenive models. Ihe values mrresponding lo the vibrational and rotational 
iimiu of the dassicai Lie aigebraic description are denoted by v and r, respediveiy. The 
curves labelled with p show the mulls of the quantum algebraic model, as a function 
of the real defamation parameter (q = e'). ?he lower and middle panels display two 
energy ratios of the gmund state band, while the upper pan shows the B ( E 2 )  ratios 
ot the interband 0: - 2: and intraband 2: - 0: elenric transitions. 

is ais0 very iarge. Tiis means that via the quantum deformation of the aigebraic 
structure (6) which describes the vibrational motion, one cannot reach the rotational 
spectrum of the two-dimensional model. 

Relating to some applications of the SU,(2) algebraic model to molecular and 
nuclear spectra, it was pointed out [SI that the quantum algebraic description is able to 
sum up in closed formulae certain series expansions, which appear in the calculation 

of a one-dimensional collective motion has been written analytically, and it was found 
to be in close agreement with the behaviour of some physical systems in which the 
dynamical symmetry, in the classical Lie algebraic sense, is broken. Here we have 
shown in the example of the two-dimensional Lie and Hopf algebraic models that the 
gap between the dynamical symmetries of the Lie algebraic description is not bridged 
hy the quantum deformation of the corresponding group chain, i.e. via the kinematic 
breaking of the symmetry. The quantum algebraic treatment extends the applicability 
of the analytical solutions; however, it seems to work only in the near neighbourhood 
of the exact dynamical symmetry. This finding indicates that the proposed [6 ,S]  

af expert.tia!? %?!.e. af physic.! OqeTatnlS. =.e sa!!!tiar! m the. eige!?va!L!e pmh!em 
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quantum extensions of the Lie algebraic models with higher ranks (SU(4), SU(6), 
etc) provide us with analytical solutions in a limited range of the symmetry breaking, 
which might be treated in the traditional approach by perturbation calculations. 

The author is indebted to Professor W Scheid for the hospitality of the Institut fur 
Theoretische Physik, Justus-Liebig-Universitgt, Giessen, where a part of this work has 
k e n  completed. This work was supported by the OTKA grant (No. 3010) and by 
the A v Humboldt Foundation. 
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